Сайт СФУ
Сибирский форум. Интеллектуальный диалог
декабрь / 2018 г.

Наноалмазы «в шубе»

Изучением удивительных по своим свойствам частиц — наноалмазов — уже более четверти века занимается красноярский учёный Владимир БОНДАРЬ вместе со своими коллегами. Владимир Станиславович возглавляет лабораторию нанобиотехнологии и биолюминесценции Института биофизики ФИЦ КНЦ СО РАН.

Сотрудники лаборатории доказали, что наноалмазы могут использоваться как адсорбенты, как носители для конструирования систем адресной доставки лекарственных препаратов и диагностических тест-систем. Результаты этих исследований можно применять при разработке и создании новых средств и методов для клинической медицины, фармацевтического производства, использовать для экологического мониторинга загрязнений воды. И это только малая часть возможностей применения наноалмазов.

— Владимир Станиславович, а что такое наноалмазы? И как их можно получить?

— Наноалмазы детонационного синтеза — это частички, которые получаются искусственным способом в результате взрыва. Конечно, из природных алмазов тоже можно получить частицы таких размеров, но по своим свойствам они будут принципиально отличаться от тех, с которыми работаем мы.

Немного предыстории. Ещё в начале 1960-х годов на Урале учёные разработали способ получения наноалмазов. Сначала теоретически обосновали возможность его создания, потом проверили на практике. Тогда способ синтеза наноалмазных частиц методом взрыва разрабатывался как один из вариантов утилизации взрывчатых веществ, которых в то время накопилось очень много.

Поскольку тематика носила закрытый характер, широкой научной общественности результаты этих исследований не были доступны. И по этой причине открытие данного метода через двадцать с лишним лет повторил наш земляк Анатолий Михайлович СТАВЕР. Когда вместе с коллегами он опубликовал работы, которые стали классическими (сегодня на них ссылается весь мир), до него стали доходить слухи, что подобное уже было сделано ранее. Анатолий Михайлович начал искать спецлитературу, получил к ней доступ и понял, что открыл уже известный способ. Но! Его заслуги нельзя умалять — он шёл своим путём, не зная результатов предыдущих исследователей. Поэтому приоритет разработки метода синтеза наноалмазов взрывом принадлежит отечественным учёным как минимум дважды.

Как же происходит синтез наноалмазов методом взрыва? Взрывчатое вещество помещается в закрытую металлическую камеру и подрывается при недостатке кислорода. Под действием ударной волны всё разлетается до молекулярного состояния. Следом за этой волной идут высокие температура и давление. И в этих условиях из атомов углерода начинает формироваться кристаллическая решётка наноалмазов, которая соответствует кристаллической решётке природного алмаза.

— А в чём же состоят особенности наноалмаза, синтезированного методом взрыва?

— Поясню. Процесс получения наноалмазов взрывом быстрый и грязный. Атомы углерода алмазного ядра, встраиваясь в решётку, успевают использовать друга на друга все свои валентности. А поверхностные углероды не успевают замкнуться, и эти вакантности тут же заполняются самыми разными компонентами использованного взрывчатого вещества — элементами несгоревшей органики, металлами, химическими группами и так далее. Таким образом, уникальность получаемых данным способом частиц состоит в том, что они, имея классическое алмазное ядро, содержат на поверхности ярко выраженную полиморфную химически активную «шубу».

После взрыва получается шихта, попросту говоря, сажа, в которой есть некая толика наноалмазов. Чтобы извлечь их, удалив примеси металлов и сажу, шихту промывают сильными кислотами. При этом происходит массообмен — что-то с поверхности наноалмазов удаляется, что-то добавляется за счёт тех химических примесей, которые вносятся с кислотами.

С точки зрения биолога, наноалмазы интересный и перспективный для изучения материал. Наличие на поверхности этих наночастиц химически активной полиморфной «шубы» и возможности её модификации открывают широчайшие перспективы для применения наноалмазов в большом спектре биомедицинских приложений.

Так мы доказали, что наноалмазы можно использовать как полифункциональный адсорбент для экспресс-выделения и очистки белков из самых разных белковых смесей. При этом не нужны ни дорогое хроматографическое оборудование, ни дорогие импортные сорбенты. Для эффективного получения целевого белка с помощью наноалмазов необходимы только пробирки, пипетки и центрифуга. В целом технологии очисти белков, основанные на применении наноалмазов, отличает быстрота, простота и эффективность.

— Как это можно использовать на практике?

— Применять в фармацевтической индустрии для наработки чистых белков, в частности ферментов. А также в клинической медицине — ведь чистота лекарственного препарата имеет принципиальное значение: когда препарат содержит примеси, могут возникать побочные эффекты.

Приведу пример из нашей практики. Несколько лет назад мы сотрудничали с коллегами из Института биоорганической химии (ИБХ РАН, Москва), в котором было организовано опытное биотехнологическое производство рекомбинантного инсулина. Это крайне востребованный гормон пептидной природы, применяемый для лечения сахарного диабета. Коллеги предоставили нам два финальных препарата инсулина, в которых мы нашли загрязняющую примесь. С помощью наноалмазов удалили эту примесь и получили оба препарата в чистом виде. К сожалению, дальнейшего развития это направление совместных исследований не получило. Хотя нам было бы интересно получить с помощью наноалмазов высокоочищенный инсулин сразу из экстрактов биомассы бактерий-продуцентов. Если бы это удалось, мы бы смогли повысить эффективность процесса выделения этого ценного целевого продукта, сократить время и затраты на его производство.

Также на основе наноалмазов мы научились конструировать системы биохимической диагностики. Создали три системы, с помощью которых можно определять физиологически важные вещества, например, в крови человека — мочевину, глюкозу и холестерин. В перспективе эти тест-системы могли бы найти применение в медицинской диагностике, мы экспериментально продемонстрировали такую возможность.

Отмечу, что мне как учёному прежде всего нужно доказать самому себе состоятельность идеи, проверив её экспериментально, и на основании полученных данных определить границы возможного практического применения.

— Разве вам не хочется, чтобы результаты вашей работы были реализованы, приносили пользу обществу?

— Хочется. Но с позиции определённого опыта считаю, что в этой жизни, используя военную терминологию, у каждого из нас есть свой окоп. Если человек профессионально занимается своим делом в своём окопе, боевые действия успешны. Если начинает метаться между окопами, дело потерпит фиаско.

Я определил для себя, чем должен заниматься. И к этому призываю молодых коллег. Мы занимаемся фундаментальными исследованиями, получаем новые знания, пытаемся объяснить механизм выявленного феномена, эффекта, явления. Потом подвергаем накопленные экспериментальные данные глубокому и всестороннему анализу, на основании которого делаем более взвешенный вывод о возможности или невозможности применения этого знания на практике. Это абсолютно правильный путь — все практические достижения человечества основаны на фундаментальных знаниях и их анализе.

К сожалению, сегодня у нас норовят «поставить телегу впереди лошади». И часто задают преждевременный вопрос: где вы собираетесь это использовать? Опережая события, хотят сразу видеть практическую реализацию. Но даже при наличии обоснованности практического применения реализовать научную разработку непросто.

Приведу пример из нашего опыта. Несколько лет мы пытались «пробить» практическое применение наноалмазов. В частности, их использование в качестве присадок к автомаслам и консистентным смазкам. Мы собрали кипу экспертных заключений с положительными отзывами из целого ряда крупных предприятий. Но осуществить практическое использование так и не смогли.

— Почему?

— Потому что мы не профессионалы в области маркетинга, рекламы, составления сложных бизнес-планов. Конечно, можно переквалифицироваться, но зачем? Когда мы занимаемся несвойственным себе делом, страдает то, чем мы должны заниматься.

— Но ведь сегодня много говорится о важности поддержки науки, необходимости реализации самых инновационных технологий…

— Складывается ощущение, что вокруг этого сейчас слишком много слов и шума. И при этом, к сожалению, дело никого не интересует в достаточной мере. Досадно, что сейчас между словами и реализацией получается слишком большой промежуток, оттого и практическое внедрение научных разработок существенно хромает. Мне посчастливилось застать времена, когда была бОльшая стабильность в этих вопросах. Когда ты мог планомерно трудиться, не отвлекаясь на посторонние дела, и ощущал значимость того, что делаешь.

Сегодня нужна разумная кооперация между учёными, которые получают результаты, пригодные для практического использования, и специалистами, которые отвечают за вопросы их внедрения в практику и умеют это делать. Чтобы развитие шло эффективно и поступательно, такой альянс просто необходим. Вероятно, это будет как-то меняться в лучшую сторону. Но доживём ли мы до тех радостных времен?

В нашей стране есть прекрасные светлые головы, потенциал учёных огромен. Но реализовать его в должной мере не получается — вот что меня огорчает. Вместо того чтобы заниматься своим делом, приходится оформлять ворох ужасных бумаг. Этот бумажный прессинг просто уничтожает интеллектуальный потенциал страны.

Хочется, чтобы всё изменилось к лучшему. Потому что в этой чехарде неясности и неопределённости легко увязнуть и потерять ощущение себя как человека, создающего что-то нужное. Поэтому для себя я решил: нужно заниматься тем делом, для которого был рождён. Пусть результаты моего труда останутся грядущим поколениям — как известно, рукописи не горят. Такой вариант действий я предлагаю молодым коллегам и горд за своих учеников, их желание трудиться и открывать новое вселяет надежду на позитивное будущее нашей отечественной науки.

— А как вы поняли, что рождены именно для этого дела? С чего начиналась ваша карьера учёного?

— Я родился в Емельяново, окончил там школу, поступил в Красноярский государственный медицинский институт. По диплому я — врач-лечебник. Но хорошо, что я достаточно быстро понял: практическая медицина — не моё. И со второго курса серьёзно занялся биохимией.

В жизни мне везло на встречи с замечательными людьми, которые многому меня научили и в человеческом, и профессиональном плане. Одна из них — встреча с Владимиром Ильичом КУЛИНСКИМ, который тогда возглавлял кафедру биохимии мединститута. Надо сказать, что врачом я так и не работал — в год окончания института мне предложили аспирантуру на этой кафедре. Но я очень рад, что учился в мединституте. Этот вуз даёт многое в плане формирования психологии человека. Вероятно, это происходит потому, что ты постоянно сталкиваешься с радостью и горем, болью и избавлением от неё, жизнью и смертью. Всё это меняет мировоззрение человека в лучшую сторону, начинаешь по-иному воспринимать и рассматривать многие аспекты жизни. Наверное, именно по этой причине достаточно много выпускников красноярского мединститута стали хорошими писателями.

Позже я перешёл в Институт биофизики и здесь встретился с академиком Иосифом Исаевичем ГИТЕЛЬЗОНОМ — моим дорогим Учителем. Это слово произношу с большой буквы. Я счастлив, что имею честь называться его учеником. Он всегда поддерживал и поддерживает все наши начинания, даёт импульсы для их развития, способствует движению вперёд. Несмотря на возраст и колоссальную загруженность, самым активным образом участвует и в обсуждениях наших планов, и в анализе результатов исследований.

Интерес к наноалмазной тематике с его стороны очевиден. Именно благодаря разговору Иосифа Гительзона с Анатолием Ставером мы стали изучать эти наночастицы. Анатолий Михайлович сетовал на то, что при производстве наноалмазов изготовители испытывают какой-то физический дискомфорт. Забегая вперёд, скажу, что это было связано не с наноалмазами, а с технической стороной процесса их производства.

Так наноалмазы появились в нашем институте, всем желающим предложили исследовать их свойства. Тогда достаточных представлений о свойствах этого материала и том, как с ними работать, ни у кого не было. Поскольку ярких эффектов в экспериментах с данными наночастицами никто не получил, всё постепенно затихло. Но спустя два года мой коллега Алексей Петрович ПУЗЫРЬ пришёл ко мне и предложил ещё раз поработать с наноалмазами. Результат эксперимента настолько нас ошеломил, что потребовался год, чтобы осмыслить выявленный эффект.

— Получается, что до этого исследователи наноалмазов искали что-то другое?

— Да, в науке такое случается — иногда в поисках чего-то одного можно пройти мимо иного, более значимого, результата. В случае с наноалмазами повезло: когда мы взглянули на этот материал как на адсорбент, решили нашу исследовательскую задачу эффективно и быстро и получили нетривиальный результат. А через год встретились вновь, с этого момента и начались систематические и разносторонние исследования свойств наночастиц и возможностей их применения в биологии и медицине.

Расскажу ещё о нескольких направлениях наших исследований. Одно из них очень модное сегодня во всём мире. Это создание систем адресной доставки веществ, применяемых в медицине. Цель благая — создать целенаправленный лекарственный препарат, чтобы он прицельно действовал в организме на определённый орган или очаг патологии. Таким образом, повышается эффективность вводимого препарата — можно локально задать его высокую концентрацию в требуемом очаге патологии и при этом избежать массы негативных побочных эффектов.

Как выглядит такая система доставки? Она состоит из трёх элементов: носителя, который доставляет препарат, самого лекарства и молекулы, которая будет направлять весь этот комплекс в нужное место. Мы создали такую систему на основе наноалмазов, которые использовали в качестве носителя. В экспериментах in vitro (в пробирке) мы доказали, что сконструированная система устойчива и проявляет свою функцию.

— А эксперименты с живыми организмами уже проводились? Работает ли эта система in vivo?

— Это принципиальный вопрос. Многие учёные мира проводят такие исследования в пробирках, в том числе и с наноалмазами. Но что происходит с системой и прежде всего с носителем в организме? Система выполнила свою терапевтическую функцию. А что произойдёт с носителем? Он будет выводиться из организма или накапливаться в нём? Мы провели исследования на мышах и уже получили часть ответов.

Когда мы вводим мышам наноалмазы внутривенно, через два с половиной часа почти половина этих частиц обнаруживается в лёгких и печени. Через десять суток в лёгких их количество снижается более чем в три раза, а в печени возрастает почти в три раза. При этом наночастицы начинают обнаруживаться в селезёнке. Через один и три месяца наблюдается такая же динамика распределения: в печени количество частиц повышается, а в лёгких — снижается. Пока непонятно, будут ли наноалмазы выводиться из печени. Изучение этого вопроса требует отдельного исследования, и у нас есть экспериментальные подходы для этого. В любом случае мы уже получили новые знания, позволяющие составить более взвешенное представление о границах применимости наноалмазов.

— Накапливаясь в печени, лёгких и селезёнке, наноалмазы наносят вред организму?

— Это тоже ещё предстоит изучить. Исследования биохимических показателей крови животных после введения им наночастиц показывают, что через два с половиной часа наблюдается изменение ряда этих показателей, а через десять суток отмечается тенденция к их нормализации. Через один и три месяца биохимические показатели крови опытных животных уже не отличаются от нормы. Но остаются открытыми вопросы: происходят ли при этом изменения биохимических показателей в органах животных? За счёт каких механизмов происходит перераспределение наноалмазов между органами? Ответы на них необходимо найти.

Возвращаюсь к другим направлениям наших исследований.

Наноалмазы могут связывать различные токсиканты. Следовательно, наноалмазы можно использовать для нейтрализации, например, микотоксинов — метаболитов низших грибов, в частности плесневых.

Наиболее опасным из них считается афлатоксин В1. Это небольшая молекула, которая активируется при попадании в организм и после этого настолько прочно связывается с молекулой ДНК, что удалить её невозможно. Такое действие микотоксинов представляет серьёзную опасность для здоровья человека, увеличивая вероятность мутаций и возникновения заболеваний на генном уровне. Это беда, особенно серьёзная для стран с мягким, влажным климатом (например, стран Африки и Латинской Америки) — в таких условиях плесневые грибы развиваются быстро и в больших масштабах.

— Наноалмазы можно использовать и для экологического мониторинга?

— Совершенно верно. В силу химически активной поверхности наноалмазы могут выступать катализаторами в химических реакциях, например в цветной реакции азосочетания, в которой одним из компонентов является фенол. Это открывает перспективы создания эффективного аналитического способа экспресс-оценки загрязнений водной среды фенолом и его аналогами для использования в экологическом мониторинге. Помните, в начале 2000-х годов на Дальнем Востоке произошла экологическая беда — в Амур попало огромное количество фенола? Благодаря использованию наноалмазов диагностика уровня загрязненности этим токсикантом была бы моментальной. Вероятно, по этой причине наша работа, посвящённая данным исследованиям, получила широкий общественный резонанс.

Софья АНДРЕЕВА